

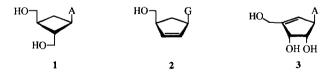
0040-4020(94)01067-6

Synthesis of 2',3'-Dideoxycyclo-2'-pentenyl-3'-Chydroxymethyl Carbocyclic Nucleoside Analogues as Potential Anti-viral Agents

Johanna Wachtmeister, Björn Classon and Bertil Samuelsson*#

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
Adress also: Astra Hässle AB, Medicinal Chemistry, S-431 83 Mölndal, Sweden

Ingmar Kvarnström


Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden

Abstract: The synthesis of optically pure unsaturated carbocyclic nucleoside analogues is described. (3,45)-Bis(t-butyldiphenylsilyloxymethyl)-2-cyclopenten-1R and 1S-ol were coupled with 6-chloropurine and 2-amino-6-chloropurine respectively, using a modified Mitsunobu reaction. The products were reacted further using standard procedures to give compounds 12, 14, 16 and 18 which were tested for anti-HIV activity.

INTRODUCTION

Carbocyclic nucleosides have emerged as a promising group of compounds for drug discovery in the anti-viral field.¹⁻⁴ Compounds such as cyclobut A (1) and carbovir (2) are active against human immunodeficiency virus (HIV)^{5,6} and (-) neoplanocin A (3) is active against certain RNA viruses (fig. 1).⁷ A special feature of these compounds is the absence of a glycosidic linkage which increases the metabolic stability against nucleoside phosphorylases and hydrolases, thereby prolonging the half-life *in vivo*.^{8,9} The comparatively higher lipophilicity of carbocyclic nucleosides is potentially beneficial for increasing oral availability and cell wall penetration.

Fig. 1

Lately the synthesis of several different types of hydroxymethyl branched nucleoside analogues have been reported. ¹⁰⁻²⁵ In order to further evaluate the anti-viral effect of hydroxymethyl substituted nucleosides, we have synthezised the 3'-hydroxymethyl substituted cyclopentenyl nucleoside analogues 12, 14, 16 and 18 (fig. 2). These derivatives can be viewed as structurally related to cyclobut A (1), carbovir (2) or (-)-neplanocin A (3).

Fig. 2

RESULTS AND DISCUSSION

Chemistry. As starting material the enantiomerically pure (3R,4R)-bis(hydroxymethyl)cyclo-pentanone ethylene glycol ketal $(4)^{26}$ was used (scheme 1). This compound was reacted with t-butyldiphenylsilyl chloride in dimethylformamide in the presense of imidazole to give 5 in 98% yield.²⁷ The ketal was hydrolyzed using a catalytic amount of p-toluenesulfonic acid in dioxane-water giving the ketone 6 in 92% yield. To introduce an olefinic bond between C-2 and C-3, compound 6 was reacted with lithium diisopropylamide and subsequently treated with phenylselenyl bromide to give the selenide 7 which was filtered through a pad of silica gel, concentrated and immediately reacted with hydrogen peroxide in dichloromethane to give the 2,3-unsaturated ketone 8 in 72% yield from $6.^{28,29}$ Selective reduction of the ketone function in 8 was accomplished in 95% yield using sodium borohydride-cerium trichloride in methanol-dichloromethane.³⁰ Separation of the two diastereomers by column chromatography yielded the allylic alcohols 9 and 10 in 63% and 32% yield, respectively. The stereoselectivity in the reduction can be rationalized from steric repulsion of the C-4 substituent which has a pseudo-equatorial orientation making the α -side sterically more accessible.

Scheme 1

i: t-Butyldiphenylsilyl chloride, imidazole, DMF; ii: pTsOH, dioxane, H_2O , 50 °C; iii: LDA, phenylselenyl bromide, THF, -78 °C; iv: H_2O_2 , CH_2Cl_2 , 0 °C; v: NaBH4, $CeCl_3$ x 7 H_2O , MeOH, CH_2Cl_2

Coupling of 9 and 10 with 6-chloropurine and with 2-amino-6-chloropurine, according to the Mitsunobu procedure, ³¹ gave diastereomeric mixtures, which could not be separated. Therefore a modified Mitsunobu reaction was developed in which the triphenylphosphine-diisopropyl azodicarboxylate (PPh₃-DIAD) complex in tetrahydrofuran was allowed to form at 0 °C. The mixture was cooled, and the alcohol and the purine were added at -78 °C. The temperature was raised and the reaction was left at 0 °C overnight giving 11, 13, 15 and 17 in 57-62% yield (scheme 2). No N-7 isomers were detected (NMR).

Compounds 12 and 16 were obtained in 90% and 92% yield, respectively, by ammonolysis of 11 and 15 in a sealed steel-vessel at 80 °C followed by desilylation using tetrabutylammonium fluoride in tetrahydrofuran.³² Desilylation of 13 and 17 with tetrabutylammonium fluoride in tetrahydrofuran followed by treatment with 80% formic acid at 80 °C and by 25% ammonium hydroxide in methanol gave 14 and 18 in 54% and 47% yield respectively (scheme 2).³³

Scheme 2

i: 6-Chloropurine, Ph₃P-DIAD, THF, 0 °C; ii: NH₃, MeOH, dioxane, 80 °C; iii: N(Bu)₄F, THF; iv: 2-amino-6-chloropurine, Ph₃P-DIAD, THF, 0 °C; v: 80% HCO₂H, 80 °C then 25% NH₄OH, MeOH

Structure Assignments. Assignment of the configurations at C-1 in 9 and 10 were based on nOc (nuclear Overhauser effect) difference spectroscopy (fig 3). In both compounds the chemical shifts for H-5 α and H-5 β were well resolved. In compound 9 significant nOe's were found between H-1 and H-5 α and between H-4 and H-5 α and in compound 10 significant nOe's were found between H-1 and H-5 β and between H-4 and H-5 α .

Fig. 3

TBDPSO
$$H_4$$
 $H_{5\alpha}$ H_1 TBDPSO H_4 $H_{5\alpha}$ OH TBDPSO $H_{5\beta}$ H_{1}

Biological Results. Compounds **12, 14, 16** and **18** were tested in an *in vitro* assay for HIV-1 RT inhibition³⁴ and in a XTT assay for anti HIV-1 and cytopathic effects.³⁵ Despite the structural similarities of these compounds to cyclobut A and carbovir, no anti-HIV activity of these compounds were found. These compounds will be further screened for biological activity.

EXPERIMENTAL SECTION

General procedures. All solvents were destilled prior to use. Thin layer chromatography was performed using silica gel 60 f-254 (Merck) plates with detection by UV and/or charring with 8% sulphuric acid. Column chromatography was performed on silica gel (Matrix Silica Si 60A, 35-70 m, Amicon). Organic phases were dried over anhydrous sodium sulphate. Concentrations were performed under reduced pressure. Optical rotations were recorded on a Perkin Elmer 241 polarimeter. NMR spectra were recorded on a JEOL GSX-270 instrument, shifts are given in ppm downfield from tetramethylsilane in CDCl₃ and CD₃OD, and from acetone (δ_H : 2.23, δ_C : 31.04) in D₂O.

(3R,4R)-Bis(t-butyldiphenylsilyloxymethyl)cyclopentanone ethylen glycol ketal (5). To an ice-cold solution of imidazole (2.60 g, 38.2 mmol) and (3R,4R)-bis(hydroxymethyl)cyclopentanone ethylen glycol ketal (4) (2.15 g, 11.4 mmol) in DMF (15 ml), t-butyldiphenylsilyl chloride (6.5 ml, 25.1 mmol) was added dropwise. The reaction mixture was stirred for 2 h at room temperature. Saturated aqueous NaHCO₃ (10 ml) was added and the mixture was extracted with toluene (2 x 25 ml). The organic layer was dried and concentrated and the residue purified by column chromatography (CHCl₃) to give 5 as a syrup (7.45 g, 98%), [α]_D +6.4° (c 1.04, CHCl₃); (Found: C, 73.79; H, 7.82. Calc. for C₄₁H₅₂O₄Si₂: C, 74.05; H, 7.88%); δ _H (270 MHz; CDCl₃) 1.00 (18 H, s, 6 CH₃), 1.78 (2 H, dd, CH₂), 1.96-2.14 (4 H, m, CH₂, 2 CH), 3.53 (2 H ⁻⁴d, CH₂OSi), 3.67 (2 H, dd, CH₂OSi), 3.86 (4 H, s, 2 OCH₂), 7.26-7.73 (20 H, m, 4 Ph); δ _C (67 MHz; CDCl₃) 19.2 (2 C-Si), 26.8 (6 CH₃), 39.1 (2 CH₂), 41.7 (2 CH), 64.2 (2 OCH₂), 66.7 (2 CH₂OSi), 116.7 (O-C-O), 127.6, 129.5, 133.8 and 135.6 (4 Ph).

(3*R*,4*R*)-Bis(*t*-butyldiphenylsilyloxymethyl)cyclopentanone (6). To a solution of compound 5 (7.45 g, 11.2 mmol) in dioxane (40 ml) and water (3 ml), *p*-toluene sulfonic acid (0.2 g) was added. The mixture was stirred for 2 h at 50 °C, then neutralized with saturated aqueous NaHCO₃ (5 ml). Water (30 ml) was added and the mixture extracted with CHCl₃ (2 x 40 ml). The organic layer was dried and concentrated. The product was purified by flash chromatography (CHCl₃) to give 6 as a colourless syrup (6.39 g, 92%), [α]_D +17.8° (c 1.52, CHCl₃); (Found: C, 75.3; H, 7.5. Calc. for C₃₉H₄₇O₃Si₂: C, 75.5; H, 7.6%); δ _H (270 MHz; CDCl₃) 1.00 (18 H, s, 6 CH₃), 2.19-2.48 (6 H, m, 2 CH₂, 2 CH), 3.57 (2 H, dd, CH₂OSi), 3.68 (2 H, dd, CH₂OSi), 7.29-7.77 (20 H, m, 4 Ph); δ _C (67 MHz; CDCl₃) 19.3 (2 C-Si), 26.9 (6 CH₃), 40.3 (2 CH₂), 41.6 (2 CH), 65.2 (2 CH₂OSi), 127.7, 129.7, 133.3 and 135.6 (4 Ph), 218.5 (C=O).

(3R,4R)-Bis(t-butyldiphenylsilyloxymethyl)-2-(phenylselenyl) cyclopentanone (7). To a solution of diisopropylamine (480 μ l, 3.41 mmol) in THF (20 ml) under nitrogen at -78 °C was added dropwise n-butyllithium in hexane (1.7 ml, 1.6 M). The mixture was allowed to reach -20 °C before it was chilled to -78

°C again. Ketone **6** (1.51 g, 2.44 mmol) in THF (30 ml) was added dropwise during 1 h and the enolate was allowed to form while the reaction mixture reached -30 °C. Rechilled to -78 °C, phenylselenyl bromide (689 mg, 2.92 mmol) in THF (15 ml) was slowly added. After 5 min saturated aqueous NH₄Cl (5 ml) was added, and the mixture was allowed to warm to room temperature. Water (50 ml) was added and the mixture was extracted with Et₂O (2 x 50 ml). The organic layer was dried, evaporated and purified by column chromatography (toluene) to give **7** as a yellow syrup (1.40 g, 74%), which decomposed upon storage. $\delta_{\rm H}$ (270 MHz; CDCl₃) 0.85 (9 H, s, 3 CH₃), 1.01 (9 H, s, 3 CH₃), 2.06-2.49 (4 H, m, CH₂, 2 CH), 3.41 and 3.60 (2 H, 2 dd, CH₂OSi, J=10.63, 3.66, 3.30 Hz), 3.53 and 3.83 (2 H, 2 dd, CH₂OSi, J=10.99, 2.75, 3.11 Hz), 3.84 (1 H, d, CH-Se, J=10.62 Hz), 7.12-7.64 (25 H, m, 5 Ph); $\delta_{\rm C}$ (67 MHz; CDCl₃) 19.2 (C-Si), 19.3 (C-Si), 26.9 (6 CH₃), 38.0 (CH₂), 40.6 (CH), 45.5 (CH), 49.5 (CH-Se), 60.3 (CH₂OSi), 62.6 (CH₂OSi), 127.5, 127.6, 128.2, 128.3, 129.0, 129.7, 133.0, 133.1, 135.5 and 135.6 (5 Ph), 214.1 (C=O).

(3,4*R*)-Bis(*t*-butyldiphenylsilyloxymethyl)-2-cyclopentenone (8). To an ice-cold solution of 30% hydrogen peroxide (3.0 ml), selenyl 7 (1.40 g, 1.81 mmol) in CH₂Cl₂ (30 ml) was slowly added. The mixture was vigorously stirred for 15 min, washed with water (2 x 5 ml), dried and concentrated. The product was purified by column chromatography (hexane-EtOAc 10:1) to give compound 8 as a bright yellow syrup (1.08 g, 97%), [α]_D -26.6° (c 0.62, CHCl₃); (Found: C, 75.5; H, 7.6. Calc. for C₃₉H₄₆O₃Si₂ C, 75.6; H, 7.5%); δ_H (270 MHz; CDCl₃; TMS) 0.91 (9 H, s, 3 CH₃), 1.05 (9 H, s, 3 CH₃), 2.17 and 2.49 (2 H, 2 dd, H-5), 2.92 (1 H, m, H-4), 3.58 (2 H, ddd, CH₂OSi), 4.40 and 4.72 (2 H, 2 d, CH₂OSi), 6.43 (1 H, s, H-2), 7.13-7.70 (20 H, m, 4 Ph); δ_C (67 MHz; CDCl₃; TMS) 19.0 (C-Si), 19.2 (C-Si), 26.7 (6 CH₃), 38.9 (CH₂), 43.3 (CH), 63.4 (CH₂OSi), 64.8 (CH₂OSi), 127.7, 127.8, 129.8, 129.9, 132.8 and 135.5 (Ph), 129.6 (CH=), 181.8 (C=); 207.7 (C=O).

(3,4S)-Bis(t-butyldiphenylsilyloxymethyl)-2-cyclopenten-1R-ol (9) and (3,4S)-Bis(t-butyldiphenylsilyloxymethyl)-2-cyclopenten-1S-ol (10). To a mixture of the 2,3-unsaturated ketone 8 (1.08g, 1.75 mmol) in MeOH (2 ml) and CH2Cl2 (2 ml), CeCl3 x 7 H2O (651 mg, 1.75 mmol) was added. When dissolved, NaBH₄ (66.2 mg, 1.75 mmol) was added in portions during 2 min. After 5 min the mixture was neutralized with 0.5 M HCl (3 drp), washed with water (2 x 5 ml), dried, concentrated and purified by column chromatography (toluene-EtOAc 10:1) to give the diastereomers separated as colourless syrups 9 (694 mg, 63%) and 10 (346 mg, 32%). 9; $[\alpha]_D$ -10.6° (c 0.825, CHCl₃); (Found: C, 75.5; H, 7.9. Calc. for C₃₉H₄₈O₃Si₂: C, 75.4; H, 7.8%); δ_H (270 MHz; CDCl₃) 0.95 (9 H, s, 3 CH₃), 1.05 (9 H, s, 3 CH₃), 1.63 (1 H, d, OH), 2.42 (1 H, ddd, H- 5α , J=12.1, 8.7 and 7.0 Hz), 2.48 (1 H, d, H- 5β , J=12.1 Hz), 2.68 (1 H, m, H-4), 3.52 (2 H, dd, CH₂OSi), 4.14 and 4.33 (2 H, 2 d, CH₂OSi), 4.64 (1 H, m, H-1), 6.02 (1 H, s, H-2), 7.25-7.76 (20 H, m, 4 Ph); δ_C (67 MHz; CDCl₃) 19.2 (C-Si), 19.3 (C-Si), 26.8 (3 CH₃), 26.9 (3 CH₃), 38.2 (C-S), 45.9 (C-4), 61.9 (CH₂OSi), 64.7 (CH₂OSi), 75.0 (C-1), 127.7, 127.8, 129.7, 129.8, 132.9, 133.5, 135.5 and 135.6 (4 Ph), 129.4 (C-2), 147.8 (C-3). 10; [\alpha]D -22.8° (c 0.65, CHCl₃); (Found: C, 75.5; H, 7.9. Calc. for $C_{39}H_{48}O_{3}Si_{2}$: C, 75.4; H, 7.8%); δ_{H} (270 MHz; CDCl₃) 0.91 (9 H, s, 3 CH₃), 1.05 (9 H, s, 3 CH₃), 1.46 (1 H, br, OH), 1.82 (1 H, ddd, H- 5α , J=13.9, 8.2 and 3.6 Hz), 2.06 (1 H, ddd, H- 5α , J=13.9, 7.1 and 4.5 Hz), 2.93 (1 H, m, H-4), 3.5 (2 H, d, CH₂OSi), 4.22 and 4.41 (2 H, 2 d, CH₂OSi), 4.75 (1 H, m, H-1), 5.88 (1 H, s, H-2), 7.20-7.74 (20 H, m, 4 Ph); $\delta_{\rm C}$ (67 MHz; CDCl₃) 19.1 (C-Si), 19.2 (C-Si), 26.7 (3 CH₃), 26.8 (3 CH₃),

38.5 (C-5), 46.6 (C-4), 62.4 (CH₂OSi), 66.3 (CH₂OSi), 76.1 (C-1), 127.6, 127.7, 129.6, 133.6, and 135.5 (4 Ph), 128.3 (C-2), 150.0 (C-3).

6-Chloro-9-[3',4'S-bis(t-butyldiphenylsilyloxymethyl)-2'-cyclopenten-1'S-yl]-9H-purine (**11**). To a solution of triphenylphosphine (260 mg, 0.99mmol) in THF (6 ml) under argon at 0 °C was added diisopropyl azodicarboxylate (DIAD, 195 ml, 0.99 mmol) over a period of 30 min. The solution was stirred for 40 min to yield a white precipitate of triphenylphosphine-DIAD complex. The mixture was cooled to -78 °C, and a suspension of 6-chloropurine (153 mg, 0.99 mmol) and alcohol **9** (409 mg, 0.66 mmol) in THF (3 ml) was added and allowed to stirr at 0 °C for 20 h. The mixture was concentrated and the product purified by column chromatography (toluene-EtOAc 3:1) to give **11** (312 mg, 62%); $\delta_{\rm H}$ (270 MHz; CDCl₃) 0.96 (9 H, s, 3 CH₃), 1.07 (9 H, s, 3 CH₃), 2.07 (1 H, ddd, H-5'α, J=13.9, 8.4 and 4.2 Hz), 2.52 (1 H, ddd, H-5'β, J=13.9, 8.1 and 5.4 Hz), 3.08 (1 H, m, H-4'), 3.62 (2 H, d, CH₂OSi), 4.34 and 4.52 (2 H, 2 d, CH₂OSi), 5.81 (1 H, m, H-1'), 5.95 (1 H, s, H-2'), 7.25-7.69 (20 H, m, 4 Ph), 7.97 (1 H, s, H-8), 8.72 (1 H, s, H-2); $\delta_{\rm C}$ (67 MHz; CDCl₃) 19.1 (C-Si), 19.2 (C-Si), 26.8 (6 CH₃), 36.5 (C-5'), 47.0 (C-4'), 59.3 (C-1'), 62.2 (CH₂OSi), 65.3 (CH₂OSi), 122.4 (C-2'), 127.7, 127.8, 129.8, 129.9, 133.2, 135.4 and 135.5 (4 Ph), 132.0 (C-5), 143.4 (C-3'), 150.8 (C-4), 151.5 (C-6), 151.7 (C-8), 154.1 (C-2).

6-Amino-9-[3',4'S-bis(hydroxymethyl)-2'-cyclopenten-1'S-yl]-9H-purine (12). Compound 11 (312 mg, 0.41mmol) was dissolved in dioxane (3 ml) and treated with saturated methanolic ammonia (18 ml) in a sealed steel-vessel at 80 °C. After 18 h the mixture was concentrated and purified by column chromatography (CHCl3-MeOH 20:1) to give 6-amino-9-[3',4'S-bis(*t*-butyldiphenylsilyloxymethyl)-2'-cyclopenten-1'S-yl]-9*H*-purine in 95% yield; δ_H (270 MHz; CDCl3) 6.43 (2 H, s, NH2). This compound (287 mg, 0.39 mmol) was dissolved in THF (3 ml) and a 1.1 M solution of QF in THF (0.74 ml) was added. After stirring for 2 h at room temperature the mixture was concentrated and the desilylated product was first purified by column chromatography (CHCl3-MeOH 3:1), then it was passed through a pad of Dowex 50 WX 8 (Na⁺) and finally purified on a Sephadex G-10 column to give 12 as a white solid (96 mg, 90%), [α]_D -30.9° (c 0.66, H₂O); (Found: C, 54.91; H, 5.79; N, 26.46. Calc. for C₁₂H₁₅O₂N₅: C, 55.16; H, 5.79; N, 26.80%); δ_H (270 MHz; D₂O) 2.13 (1 H, ddd, H-5' $_{\alpha}$, J=13.9, 8.5 and 4.4 Hz), 2.48 (1 H, ddd, H-5' $_{\beta}$, J=13.9, 8.3 and 5.1 Hz), 3.16 (1 H, m, H-4'), 3.71 (2 H, dd, CH₂OH), 4.33 (2 H, d, CH₂OH), 5.54 (1 H, m, H-1'), 5.92 (1 H, s, H-2'), 8.02 (1 H, s, H-8), 8.11 (1 H, s, H-2); δ_C (67 MHz; D₂O) 36.4 (C-5'), 47.1 (C-4'), 59.8 (C-1'), 61.0 (CH₂OH), 63.3 (CH₂OH), 119.1 (C-5), 124.5 (C-2'), 140.6 (C-3'), 148.6 (C-4), 152.1 (C-8), 152.6 (C-2), 155.6 (C-6).

2-Amino-6-chloro-9-[3',4'S-bis(t-butyldiphenylsilyloxymethyl)-2'-cyclopenten-1'S-yl]-9H-purine

(13). To a solution of triphenylphosphine (173 mg, 0.66 mmol) in THF (5 ml) under argon at 0 °C was added diisopropyl azodicarboxylate (DIAD, 130 ml, 0.66 mmol) over a period of 30 min. The solution was stirred for 40 min to yield a white precipitate of triphenylphosphine-DIAD complex. The mixture was cooled to -78 °C, and a suspension of 2-amino-6-chloropurine (112 mg, 0.66 mmol) and alcohol 9 (273 mg, 0.44 mmol) in THF (2 ml) was added and allowed to stirr at 0 °C for 20 h. The mixture was concentrated and the product purified by column chromatography (toluene-EtOAc 2:1) to give 13 (194 mg, 57%); $\delta_{\rm H}$ (270 MHz; MeOD) 0.95 (9 H, s, 3 CH₃), 1.05 (9 H, s, 3 CH₃), 2.03 (1 H, ddd, H-5' $_{\rm C}$, J=13.9, 8.4 and 4.2 Hz), 2.43 (1 H, ddd, H-

 5°_{β} , J=13.9, 8.3 and 5.3 Hz), 3.04 (1 H, m, H-4'), 3.60 (2 H, d, CH₂OSi), 4.31 and 4.49 (2 H, 2 d, CH₂OSi), 5.23 (2 H, s, NH₂), 5.59 (1 H, m, H-1'), 5.91 (1 H, s, H-2'), 7.18-7.69 (20 H, m, 4 Ph), 7.75 (1 H, s, H-8), δ_C (67 MHz; MeOD) 19.1 (C-Si), 19.2 (C-Si), 26.8 (6 CH₃), 36.4 (C-5'), 47.0 (C-4'), 58.5 (C-1'), 62.2 (CH₂OSi), 65.5 (CH₂OSi), 122.9 (C-2'), 125.6 (C-5) 127.7, 127.8, 129.8, 129.9, 133.1, 133.2, 135.4 and 135.5 (4 Ph), 140.6 (C-3'), 151.0 (C-6), 153.4 (C-4), 153.5 (C-2), 158.9 (C-8).

2-Amino-9-[3',4'S-bis(hydroxymethyl)-2'-cyclopenten-1'S-yl]-9H-purine-6(1H) - o n e (14). Compound 13 (194 mg, 0.25 mmol) was dissolved in THF (2 ml) and a 1.1 M solution of QF in THF (0.45 ml) was added. After stirring for 2 h at room temperature the mixture was concentrated and purified by column chromatography (CHCl₃-MeOH 10:1) to give 2-amino-6-chloro-9-[3',4'S-bis(hydroxymethyl)-2'-cyclopenten-1'S-yl]-9H-purine in 94% yield (checked by ¹H-NMR). This compound (69 mg, 0.23 mmol) was dissolved in 80% HCO₂H (3 ml) and stirred at 80 °C for 2 h. The mixture was concentrated and dissolved in MeOH (3 ml) and 25% NH₄OH (0.5 ml). After stirring for 2 h the mixture was concentrated and the residue was first purified by column chromatrography (CHCl₃-MeOH 3:1), then passed through a pad of Dowex 50 WX 8 (Na⁺) and finally purified on a Sephadex G-10 column to give **14** as a white solid (37 mg, 54%), [α]_D -20.1° (c 0.40, H₂O); (Found: C, 51.67; H, 5.32; N, 24.99. Calc. for C₁₂H₁₅O₃N₅: C, 51.98; H, 5.45; N, 25.26%); δ_H (270 MHz; D₂O) 2.15 (1 H, ddd, H-5'α, J=13.9, 8.4 and 4.0 Hz), 2.46 (1 H, ddd, H-5'β, J=13.9, 8.4 and 5.5 Hz), 3.19 (1 H, m, H-4'), 3.70 (2 H, dd, CH₂OH), 4.32 (2 H, d, CH₂OH), 5.46 (1 H, m, H-1'), 5.87 (1 H, s, H-2'), 7.76 (1 H, s, H-8), δ_C (67 MHz; D₂O) 36.5 (C-5'), 47.2 (C-4'), 59.5 (C-1'), 60.0 (CH₂OH), 63.3 (CH₂OH), 116.9 (C-5), 125.1 (C-2'), 138.6 (C-3'), 152.1 (C-4'), 152.2 (C-8), 154.1 (C-2), 159.9 (C-6).

6-Chloro-9-[3',4'S-bis(t-butyldiphenylsilyloxymethyl)-2'-cyclopenten-1'*R***-yl]-9***H***-purine** (15). To a solution of triphenylphosphine (176 mg, 0.47 mmol) in THF (5 ml) under argon at 0 °C was added diisopropyl azodicarboxylate (DIAD, 132 ml, 0.67 mmol) over a period of 30 min. The solution was stirred for 40 min to yield a white precipitate of triphenylphosphine-DIAD complex. The mixture was cooled to -78 °C, and a suspension of 6-chloropurine (104 mg, 0.67 mmol) and alcohol **10** (279 mg, 0.45 mmol) in THF (2 ml) was added and allowed to stirr at 0 °C for 20 h. The mixture was concentrated and the product purified by column chromatography (toluene-EtOAc 3:1) to give **15** (197 mg, 58%); δ_H (270 MHz; CDCl₃) 0.95 (9 H, s, 3 CH₃), 1.07 (9 H, s, 3 CH₃), 1.71 (1 H, dt, H-5'β, J=13.2, and 6.2 Hz), 2.83 (1 H, dt, H-5'α, J=13.2, and 8.4 Hz), 2.91 (1 H, m, H-4'), 3.54 (2 H, dd, CH₂OSi), 4.34 and 4.57 (2 H, 2 d, CH₂OSi), 5.72 (1 H, m, H-1'), 5.91 (1 H, s, H-2'), 7.23-7.71 (20 H, m, 4 Ph), 8.08 (1 H, s, H-8), 8.72 (1 H, s, H-2); δ_C (67 MHz; CDCl₃) 19.1 (C-Si), 19.2 (C-Si), 26.8 (6 CH₃), 35.7 (C-5'), 47.3 (C-4'), 58.7 (C-1'), 62.3 (CH₂OSi), 65.3 (CH₂OSi), 122.3 (C-2'), 127.7, 127.8, 129.8, 129.9, 133.1, 133.2, 135.4 and 135.5 (4 Ph), 132.0 (C-5), 143.4 (C-3'), 150.8 (C-4), 151.5 (C-6), 151.7 (C-8), 153.5 (C-2).

6-Amino-9-[3',4'S-bis(hydroxymethyl)-2'-cyclopenten-1'R-yl]-9H-purine (16). Compound 15 (197 mg, 0.26 mmol) was dissolved in dioxane (2 ml) and treated with saturated methanolic ammonia (15 ml) in a sealed steel-vessel at 80 °C. After 18 h the mixture was concentrated and purified by column chromatography (CHCl₂-MeOH 20:1) to give 6-amino-9-[3',4'S-bis(t-butyldiphenylsilyloxymethyl)-2'-cyclopenten-1'R-yl]-9H-purine in 96% yield; δ_H (270 MHz; CDCl₃) 6.03 (2 H, s, NH₂). This compound (184 mg, 0.25 mmol) was

dissolved in THF (2 ml) and a 1.1 M solution of QF in THF (0.45 ml) was added. After stirring for 2 h at room temperature the mixture was concentrated and the desilylated product was first purified by column chromatography (CHCl₃-MeOH 3:1), then passed through a pad of Dowex 50 WX 8 (Na⁺) and finally purified on a Sephadex G-10 column to give **16** as a white solid (66 mg, 92%), $[\alpha]_D$ -25.8° (c 0.66, H₂O); (Found: C, 55.09; H, 5.75; N,26.39. Calc. for C₁₂H₁₅O₂N₅: C, 55.16; H, 5.79; N, 26.80%); δ_H (270 MHz; D₂O) 1.72 (1 H, dt, H-5' $_{\beta}$, J=13.9 and 5.1 Hz), 2.83 (1 H, dt, H-5' $_{\alpha}$, J=13.9 and 8.8 Hz), 3.01 (1 H, m, H-4'), 3.64 (2 H, d, CH₂OH), 4.29 and 4.40 (2 H, 2 d, CH₂OH), 5.40 (1 H, m, H-1'), 5.88 (1 H, s, H-2'), 7.99 (1 H, s, H-8), 8.00 (1 H, s, H-2); δ_C (67 MHz; D₂O) 35.7 (C-5'), 47.3 (C-4'), 59.6 (C-1'), 60.0 (CH₂OH), 63.1 (CH₂OH), 119.1 (C-5), 124.3 (C-2'), 140.9 (C-3'), 148.7 (C-4), 152.2 (C-8), 152.6 (C-2), 155.7 (C-6).

2-Amino-6-chloro-9-[3',4'S-bis(t-butyldiphenylsilyloxymethyl)-2'-cyclopenten-1'R-yl]-9H-purine

(17). To a solution of triphenylphosphine (149 mg, 0.57 mmol) in THF (5 ml) under argon at 0 °C was added diisopropyl azodicarboxylate (DIAD, 112 ml, 0.57 mmol) over a period of 30 min. The solution was stirred for 40 min to yield a white precipitate of triphenylphosphine-DIAD complex. The mixture was cooled to -78 °C, and a suspension of 2-amino-6-chloropurine (97 mg, 0.57 mmol) and alcohol 10 (236 mg, 0.38 mmol) in THF (2 ml) was added and allowed to stirr at 0 °C for 20 h. The mixture was concentrated and the product purified by column chromatography (toluene-EtOAc 2:1) to give 17 (155 mg, 58%); δ_H (270 MHz; MeOD) 0.87 (9 H, s, 3 CH₃), 1.05 (9 H, s, 3 CH₃), 1.64 (1 H, dt, H-5' $_{\beta}$, J=13.3, 6.6 Hz), 2.73 (1 H, dt, H-5' $_{\alpha}$, J=13.3 and 8.4 Hz), 2.87 (1 H, m, H-4'), 3.55 (2 H, dd, CH₂OSi), 4.31 and 4.55 (2 H, 2 d, CH₂OSi), 5.36 (2 H, s, NH₂), 5.51 (1 H, m, H-1'), 5.86 (1 H, s, H-2'), 7.23-7.74 (20 H, m, 4 Ph), 7.76 (1 H, s, H-8), δ_C (67 MHz; MeOD) 19.1 (C-Si), 19.2 (C-Si), 26.8 (6 CH₃), 35.7 (C-5'), 47.3 (C-4'), 58.0 (C-1'), 62.4 (CH₂OSi), 65.5 (CH₂OSi), 122.7 (C-2'), 125.9 (C-5) 127.7, 127.8, 129.8, 129.9, 133.1, 133.2 and 135.4 (4 Ph), 140.5 (C-3'), 152.7 (C-6), 152.8 (C-4), 153.4 (C-2), 159.0 (C-8).

2-Amino-9-[3',4'S-bis(hydroxymethyl)-2'-cyclopenten-1'R-yl]-9H-purine-6(1H) - on e (18).

Compound 17 (155 mg, 0.22 mmol) was dissolved in THF (2 ml) and a 1.1 M solution of QF in THF (0.4 ml) was added. After stirring for 2 h at room temperature the mixture was concentrated and purified by column chromatography (CHCl₃-MeOH 10:1) to give 2-amino-6-chloro-9-[3',4'S-bis(hydroxymethyl)-2'-cyclopenten-1'*R*-yl]-9*H*-purine in 91% yield (checked by ¹H-NMR). This compound (56 mg, 0.20 mmol) was dissolved in 80% HCO₂H (3 ml) and stirred at 80 °C for 2 h. The mixture was concentrated and dissolved in MeOH (3 ml) and 25% NH₄OH (0.5 ml). After stirring for 2 h the mixture was concentrated and the residue was first purified by column chromatrography (CHCl₃-MeOH 3:1), then passed through a pad of Dowex 50 WX 8 (Na⁺) and finally purified on a Sephadex G-10 column to give 18 as a white solid (29 mg, 47%), [α]D -12.8° (c 0.25, H₂O); (Found: C, 51.75; H, 5.35; N,25.08. Calc. for C₁₂H₁₅O₃N₅: C, 51.98; H, 5.45; N, 25.26%); δ _H (270 MHz; D₂O) 1.78 (1 H, dt, H-5' β , J=13.9 and 5.1 Hz), 2.85 (1 H, dt, H-5' α , J=13.9 and 8.8 Hz), 3.01 (1 H, m, H-4'), 3.67 (2 H, dd, CH₂OH), 4.27 and 4.37 (2 H, 2 d, CH₂OH), 5.41 (1 H, m, H-1'), 5.86 (1 H, s, H-2'), 7.82 (1 H, s, H-8), δ _C (67 MHz; D₂O) 35.7 (C-5'), 47.3 (C-4'), 59.2 (C-1'), 60.0 (CH₂OH), 63.2 (CH₂OH), 117.5 (C-5), 124.9 (C-2'), 140.3 (C-3'), 150.3 (C-4), 151.6 (C-8), 154.6 (C-2), 159.7 (C-6).

Acknowledgements. We thank the Swedish National Board for Industrial and Technical Development and Medivir AB for financial support and Medivir AB for the biological testings.

REFERENCES

- 1. Marquez, V. E.; Lim, M.-I. Med. Res. Rev. 1986, 6, 1-40.
- 2. Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571-623.
- 3. Studies in Natural Products Chemistry; Niitsuma, S.; Ichikawa, Y.-I.; Takita, T., Ed.; Elsevier Science Publishers B. V.: 1992; Vol. 10, pp 585-627.
- 4. Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. *Tetrahedron* **1994**, *50*, 10611-10670.
- Vince, R.; Hua, M.; Brownell, J.; Daluge, S.; Lee, F.; Shannon, W. M.; Lavelle, G. C.; Qualls, J.;
 Weislow, O. S.; Kiser, R.; Canonico, P. G.; Schultz, R. H.; Narayanan, V. L.; Mayo, J. G.;
 Shoemaker, R. H.; Boyd, M. R. Biochem. Biophys. Res. Commun. 1988, 156, 1046-1053.
- Norbeck, D. W.; Kern, E.; Hayashi, S.; Rosenbrook, W.; Sham, H.; Herrin, T.; Plattner, J. J.;
 Erickson, J.; Clement, J.; Swanson, R.; shipkowitz, N.; Hardy, D.; Marsh, K.; Arnett, G.; Shannon, W.
 M.; Broder, S.; Mitsuya, H. J. of Med. Chem. 1990, 33, 1281-1285.
- 7. De Clercq, E. Biochem. Pharmacol. 1987, 36, 2567-2575.
- 8. Shealy, Y. F.; Clayton, J. D. J. Am. Chem. Soc. 1966, 88, 3885-3887.
- 9. Shealy, Y. F.; Clayton, J. D. J. Am. Chem. Soc. 1969, 91, 3075-3083.
- 10. Bamford, M. J.; Coe, P.; Walker, R. T. J. Med. Chem. 1990, 33, 2494-2501.
- 11. Svansson, L.; Kvarnström, I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1991, 56, 2993-
- 12. Tseng, C.; Marquez, V. E.; Milne, G. W. A.; Wysocki, R. J.; Mitsuya, H.; Shirasaki, T.; Driscoll, J. S. J. Med. Chem. 1991, 34, 343-349.
- 13. Sterrzycki, R. Z.; Martin, J. C.; Wittman, M.; Brankovan, V.; Yang, H.; Hitchcock, M. J.; Mansuri, M. M. Nucleosides & Nucleotides 1991, 10, 291-294.
- 14. Boumchita, H.; Legraverend, M. Heterocycles 1991, 32, 1785-.
- 15. Jansson, M.; Svansson, L.; Svensson, S. C. T.; Kvarnström, I.; Classon, B.; Samuelsson, B. *Nucleosides & Nucleotides* **1992**, *11*, 1739-1747.
- 16. Buenger, G. S.; Marquez, V. E. Tetrahedron Letters 1992, 33, 3707-3710.
- 17. Ioannidis, P.; Classon, B.; Samuelsson, B.; Kvarnström, I. *Nucleosides & Nucleotides* **1992**, *11*, 1205-1218.
- 18. Kvarnström, I.; Svansson, L.; Svensson, C.; Svensson, S. C. T.; Classon, B.; Samuelsson, B. *Nucleosides & Nucleotides* **1992**, *11*, 1367-1370.
- Ioannidis, P.; Classon, B.; Samuelsson, B.; Kvarnström, I. Nucleosides & Nucleotides 1993, 12, 865-977.
- Ioannidis, P.; Classon, B.; Samuelsson, B.; Kvarnström, I. Nucleosides & Nucleotides 1993, 12, 449-462.
- 21. Björsne, M.; Classon, B.; Kvarnström, I.; Samuelsson, B. Tetrahedron 1993, 49, 8637-8644.

- 22. Brånalt, J.; Kvarnström, I.; Niklasson, G.; Svensson, S. C. T.; Classon, B.; Samuelsson, B. *J. Org. Chem.* **1994**, *59*, 1783-1788.
- Rosenquist, Å.; Kvarnström, I.; Svensson, S. C. T.; Classon, B.; Samuelsson, B. J. Org. Chem. 1994, 59, 1779-1782.
- 24. Lee-Ruff, E.; Wan, W.-Q.; Jiang, J.-L. J. Org. Chem. 1994, 59, 2114-2118.
- 25. Bonall, C.; Chavis, C.; Lucas, M. J. Chem. Soc., Perkin 1 1994, 1401-1410.
- Rosenquist, Å.; Kvarnström, I.; Svensson, S. C. T.; Classon, B.; Samuelsson, B. *Acta Chem. Scand.* 1992, 46, 1127-1129.
- 27. Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975-2977.
- 28. Renga, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc. 1973, 95, 5813-5815.
- 29. Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434-5447.
- 30. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226-2227.
- 31. Mitsunobu, O. Synthesis 1981, 1-28.
- 32. Dodd, G. H.; Golding, B. T.; Ioannou, P. V. J. Chem. Soc., Chem. Commun. 1975, 249-250.
- 33. Duckworth, D. M.; Harnden, M. R.; Perkins, R. M.; Planterose, D. N. Antiviral Chemistry and Chemotherapy 1991, 2, 229-241.
- 34. Vrang, L.; Remand, G.; Chattopadhaya, J.; Öberg, B. Antiviral Research 1987, 7, 139-149.
- 35. Ouen, S.; Weislow, R. K.; Fine, D. L.; Bader, J.; Shoemaker, R. H.; Boyd, M. R. *Journal of the National Cancer Institute* 1989, 81, 577-586.

(Received in UK 31 October 1994; revised 28 November 1994; accepted 2 December 1994)